
Appendix B

1 Introduction

The fundamental theorem of Galois Theory states that for a Galois extension E{F , we have an order
reversing correspondence between subfields of E containing F and subgroups of Gal pE{F q. Thus,
understanding Galois field extensions E{Q amounts to understanding an absolute Galois group of
Q.

Recall that the algebraic closure of Q, which we will denote by Q, is an algebraic field extension
of Q in which all polynomials have roots. Thus, Q contains all finite degree extensions of Q. The
absolute Galois group Gal

�
Q{Q

�
is the set of all field isomorphisms of Q which fix Q. Given a

normal subgroup H �Gal
�
Q{Q

�
, we get a subfield QH of Q compromising of elements of Q which

are fixed by all elements of H. If
�
Gal

�
Q{Q

�
: H

�
  8, then

�
QH : Q

�
  8.

Can we have a direct description of Gal
�
Q{Q

�
? One motivation comes from fields whose absolute

Galois group is well-understood. For example, the field of reals, which we denote by R, has a
well-known algebraic closure of degree two viz. the putative complex numbers C. Moreover,
Gal

�
R{R

�
�GalpC{Rq � Z{2Z with the nontrivial map being the conjugation operation. Also, for

any finite field Fp with characteristic prime p and order p, we know that for each positive integer
n, there is a unique, up to isomorphim, field with pn elements and so, each Fpn is an extension of
Fp, giving us GalpFpn{Fpq � Z{nZ. For varying n, we can get an infinite Hasse diagram, with order
determined by inclusions. Dually, we get a diagram of Galois groups and the absolute Galois group
is the inverse limit of the diagram,

Gal
�
Fp{Fp

�
� limÐÝ

n

Z{nZ �pZ
A hope to study something similar for Gal

�
Q{Q

�
is not a pleasant undertaking, partly because the

existence of Q relies on the Axiom of Choice and is inherently non-constructive. An alternative strat-
egy is to consider a field F closely related to Q which allows us to say something about Gal

�
F {F

�
.

We would also like to do this systematically. This is what local class field theory is about.
Let us briefly recall some important facts related to Galois Theory. If E{F is finite degree,

then being Galois is equivalent to being separable (@α P E, the roots of the minimal polynomial
mα pXq P F rXs are distinct) and normal (E{F is separable and E is the splitting field for some
polynomial f pXq P F rXs). Artin’s theorem tells us that if E{F is a finite degree Galois extension,
then the extension E{EH is Galois (with Galois group H), for any subgroup H of GalpE{F q. If H
is normal, then the extension EH{F is also Galois.

If K{F is Galois, L{F is an extension and F be the algebraic closure over F . Let KL be the
minimal subfield of F containing K and L. Then, K{K X L is also Galois and KL{L is Galois.
Moreover, the restriction GalpKL{Lq ÝÑGalpK{K X Lq given by σ ÞÝÑ σ|K is an isomorphism.
Moreover, if L{F is also Galois, then KL{F is Galois and

Gal pKL{F q � tpσ, τq P Gal pK{F q �Gal pL{F q : σ|KXL � τ |KXLu .

In particular, if K X L � F , then GalpKL{F q �GalpK{F q�GalpL{F q. Let us prove this last part.
Consider the map

Ψ : Gal pKL{F q ÝÑ Gal pK{F q �Gal pL{F q
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defined by σ ÞÝÑ pσ|K , σ|Lq. In this case, σ|K |KXL � σ|L|KXL is trivially true. Thus, the
mapping is well-defined. To show that Ψ is an injection, let Ψ pσq � pidK , idLq � pσ|K , σ|Lq and so
σ|K � idK and σ|L � idL. By action of σ on roots of KL and its respective restrictions, it follows
that σ � idKL. Consider the projection

pr2 : Im Ψ ÝÑ Gal pL{F q .

This is surjective by elementary reasoning of Galois extensions. We claim that prτ |K , τq P Im Ψ
where pr2 prτq � τ . Consider

ker ppr2q ãÑ Im Ψ
pr2ÝÑ Gal pL{F q

so

ker ppr2q � tpσ, idLq P Gal pK{F q �Gal pL{F q : σ|KXL � idKXLu � Gal pK{K X Lq � Gal pKL{Lq

and so, |Im Ψ| � |Gal pKL{Lq| � |Gal pL{F q|. From the injection of GalpKL{Lq to Im Ψ and by the
pigeonhole principle, the injection is an isomorphism.

2 Artin Reciprocity

Our journey begins with local reciprocity isomorphism theorem. Let us begin by recalling some
familiar properties of Q. It has the (standard) absolute value, which we will denote by |.|8. This
makes Q a metric space, the completion of which gives us R. With the multiplicative groups R�
and C�, we can define a norm map φ : C� ÝÑ R� by

a ÞÝÑ φ paq � aa �
¹

gPGalpC{Rq
g paq

with kerφ � S1 giving rise to the diagram

0 0

S1 Z
2Z

C� R�

R¡0

0 0

φ

Thus, there is an isomorphism between R�{R¡0 and GalpC{Rq. In other words, we can study
GalpC{Rq “internally” to R. This pattern for computing Galois groups for a large class of fields such
as the one above are called local fields. For instance, GalpC{Rq is an example of a Galois group of a
finite degree field extension E{R that is a finite Abelian group, so we can decompose it as a direct
sum of cyclic groups of order of (different) primes. Moreover, from Galois theory, we know that the
order of |Gal pE{F q| � rE : F s. Thus, if GalpE{F q � Z{mZ, then |Gal pE{F q| � rE : F s � m.

2



Are there other fields F along with Galois field extensions E{F , so that we can compute GalpE{F q
internally to F? Answering this question, which is yes for a large class of fields, is the domain of
Kummer Theory. Kummer Theory starts by looking at finite degree Galois Extensions E{F where
GalpE{F q is a cyclic group.

Definition 1 Let F be a field. A cyclic extension of F is any finite degree Galois extension E{F
such that the Galois group GalpE{F q is cyclic group of finite degree.

Given a field F and given a choice of a positive integer n P Z¡0, define µn pF q � ta P F : an � 1u.
This is a group under multiplication and is the set of roots of unity for F � C. What’s important
is the presence of a primitive root. This is an element ω P µn pF q which generates µn pF q. Thus,
µn pF q �

 
1, ω, ..., ωn�1

(
.

Consider the field C ptq of rational functions with coefficients in C. Observe that, for any positive
integer n, there is a primitive n-th root of unity in C, which sits inside C ptq. However, the element
t P C ptq is not a root of unity so we can adjoin an n-th root of t to C ptq and let t1{n denote this

n-th root and we can get a field C ptq
�
t1{n

�
� CptqrXs

pXn�tq � C ptq �C ptqX �C ptqX2 � ...�C ptqXn�1

using the fact that
�
C ptq

�
t1{n

�
: C ptq

�
� n. Is this a Galois extension? One way to show that this

is the case is by showing that AutCptqC ptq
�
t1{n

�
� Z{nZ.

Let us try to name an element in the automorphism group AutCptqC ptq
�
t1{n

�
. One thing we know

about such an element is that it permutes the roots of the minimal polynomial Xn�t. If ω is a choice
of a primitive n-th root of unity in C ptq, then roots of Xn � t are

 
t1{n, ωt1{n, ..., ωn�1t1{n

(
where�

ωit1{n
�n
� t for 0 ¤ i ¤ n� 1. One automorphism is staring right at us: if σ P AutCptqC ptq

�
t1{n

�
,

then σ
�
t1{n

�
� ωt1{n. Observe that σ pωq � ω and that σn � id. This basically gives us an automor-

phism of the vector space C ptq �C ptq t1{n�C ptq t2{n� ...�C ptq t
n�1
n and so

 
id, σ, σ2, ..., σn�1

(
�

AutCptqC ptq
�
t1{n

�
. Thus, we have a cyclic group of C ptq-fixing automorphisms of C ptq

�
t1{n

�
, im-

plying that
 
id, σ, σ2, ..., σn�1

(
is a Galois subroup of AutCptqC ptq

�
t1{n

�
. Because C ptq contains a

primitive n-th root of unity, the order of σ is n and so, AutCptqC ptq
�
t1{n

�
�

 
id, σ, σ2, ..., σn�1

(
.

This conclusion is the hypothesis of the following:

Theorem 2 (Hilbert 90) Let F be a field and assume that it contains a primitive n-th root of
unity ω for some fixed n. Let E{F be an n-degree, cyclic Galois extension. If σ PGalpE{F q is a
generator, then, there exists an element a P Ez t0u such that σ paq � ωa.

Proof. Observe that E is an n-dimensional F -vector space so we can think of the generator σ as
an F -linear automorphism so the statement can be viewed as an eigenvalue statement. That is, ω
is an eigenvalue of the eigenvector a. In particular, since E{F is Galois, the automorphism σ of E
fixes F and so an automorphism σ is F -linear.

Our focus will be on the roots in the underlying field F of the characteristic polynomial of σ, which
is the monic polynomial det pXidE � σq P F rXs of degree n. We show that det pXidE � σq � Xn�1
and we will be done.

Let mσ pXq � det pXidE � σq � Xn � cn�1X
n�1 � ... � c1X � c0. By the Cayley-Hamilton

Theorem, mσ pσq � 0. Consider the set I � tQ pXq P F rXs : Q pσq � 0u. It can be shown that
this is an ideal of F rXs: if Q1 pXq , Q2 pXq P I, then pQ1 �Q2q pσq � Q1 pσq � Q2 pσq � 0 and so,
Q1 pXq � Q2 pXq P I and similarly for scalars. Since F rXs is a PID, I � pP pXqq. We know that
σ satisfies Xn � 1. That is, Xn � 1 P I. Now, P pXq is the minimal polynomial of degree ¤ n
and P pXq divides Xn � 1 and also divides det pXidE � σq. Thus, we simply need to show that
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Xn � 1 � mσ pXq. Assume, for the sake of contradiction, that degP pXq � d   n. Then, P pσq � 0
tells us that we can choose coefficients a0, ...., ad P F such that

a0idE � a1σ � a2σ
2 � ...� adσ

d � 0 (1)

Why is this absurd? This has to do with Dedekind’s Theorem (distinct elements in the Galois group
are linearly independent over the ground group). Let us throw out trivial coefficients in p1q. This
amounts to choosing minimal index 1 ¤ m ¤ d such that we have linear dependence. Observe that
am �� 0, in particular, in

a0idE � a1σ � ...� amσ
m � 0 (2)

where relations are over E. Now, recall that σ is a field automorphism, so we can plug in the
product bc P E for some b, c P E into a0idE � a1σ� ...� amσm � 0 to get a0bc� a1σ pbqσ pcq � ...�
amσ

m pbqσm pcq � 0. For a fixed b, we have another linear dependence relation

a0b� a1σ pbqσ � ...� amσ
m pbqσm � 0 (3)

Again, the p3q holds over E.
Consider σm pbq p2q � p3q, which gives us

a0σ
m pbq � a0b� pa1σm pbq � a1σ pbqqσ � ...� pamσm pbq � amσ

m pbqqσm � 0.

Clearly, the coefficient of σm is zero. We can choose b P E such that one of the coefficients is not
zero, say aiσ

m pbq � aiσi pbq �� 0 but then σm�i pbq �� b and σm�i pbq is not identity, a contradiction.

Corollary 3 Let F be a field containing a primitive nth root of unity (say ω). Then, every degree
n cyclic extension E{F is of the form E � F

�
a1{n

�
for a P F where the order of the class of a in

F�{ pF�qn is n.

Here, F� is the multiplicative group of non-zero elements of F containing�
F�

�n
�

 
fn P F� : f P F�

(
the set of all elements in F� that have nth roots in F . For example, pC�qn � C� so that
C�{ pC�qn � t1u. Also, �

R�
�n
�

"
R� n is odd
R¡0 n is even

and so R�{ pR�qn � t1u in the former case and R�{ pR�qn � Z{2Z if n is even. As a final example,
consider F � C ptq, where t has no n-th root since t2, t3, ..., tn�1 do not have nth roots so each

rts P C ptq� {
�
C ptq�

	n
has order n.

Proof. Fix generator σ of Gal pE{F q � Z{nZ. By Hilbert 90, we have an element α P E� such
that σ pαq � ωα. Let a � αn. First, we need to show that that a P F . We can do this by showing
that σ paq � a and this is indeed true: σ paq � σ pαnq � σ pαqn � pωαqn � ωnαn � αn � a.

Next, we need to show that E � F
�
a1{n

�
. Consider the extension F pαq of F . Observe that

F � F pαq � E and so F pαq � F rXs { ppm pXqq � F � Fα � Fα2 � ... � Fαm�1 where m ¤ n.
To finish the proof, we need to show that F pαq is a degree n extension. If 0   m is minimal such
that αm P F , then we can conclude that m � n and we will be done. Suppose that αm P F . Then,
σ pαmq � αm but σ pαmq � ωmαm and ωm �� 1. A contradiction. Hence F pαq � E and α � a1{n

for a P F .
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Now, we need to show that the class of a in F�{ pF�qn has order n. Suppose otherwise: then
there exists 1 ¤ m   n such that am � 1 in F�{ pF�qn. That is, am P pF�qn. That is, am � bn for

some b P F . Now, recall that αn � a. Then, αnm � bn and so, αmn

bn � 1 or that
�
αm

b

�n
� 1 so that

αm{b is some root of unity. Then, αm � bς P F where ς is the nth root of unity, a contradiction.
A partial converse holds.

Theorem 4 Let F be a field containing a primitive root of unity ω. Then, F
�
a1{n

�
{F for some

a P F�, is a cyclic extension.

Proof. This root a1{n satisfies the polynomial Xn�a P F rXs. The distinct roots of this polynomial
are a1{n, ωa1{n, ω2a1{n, ...., ωn�1a1{n, rendering this minimal polynomial separable and, therefore,
F
�
a1{n

�
{F Galois. Now, given any σ PGal

�
F
�
a1{n

�
{F

�
, σ

�
a1{n

�
� ωkpσqa1{n where k pσq P Z{nZ

and ωn � 1. The map k is a group homomorphism. It is, in fact, injective. If not, then for some
element σ PGal

�
F
�
a1{n

�
{F

�
such that σ

�
a1{n

�
� ω0a1{n but this would imply that this element

is trivial. We, therefore, have an embedding k :Gal
�
F
�
a1{n

�
{F

�
ÝÑ Z{nZ in a cyclic group and

subgroups of cyclic groups are cyclic.
Kummer Theory requires F to contain a primitive n-th root of unity. This, therefore, places a

constraint on the choice of n dictated by the characteristic of F : suppose charF � p ¡ 0. Let ω be
a pth root of unity in F . But then ω satisfies Xp � 1 P F rXs. Note that Xp � 1 � Xp � p�1qp �
pX � 1qp which means that ω � 1 is the trivial primitive root of unity. Thus, F does not contain
a (nontrivial) primitive p-th root of unity. In effect, F does not contain a primitive mpe-th root of
unity, where m, e P Z. Thus, fields of nonzero characteristic p do not have an n-th root of unity if
p | n.

Now, let F be a field. A finite degree Galois extension E{F is n-Kummer if (i) the ground field
contains the primitive nth root of unity and (ii) GalpE{F q is Abelian, with exponent (the minimal
positive m such that σm � id for all σ) dividing n.

Proposition 5 If F contains primitive n-th root of unity, then the following are equivalent

1. E{F is n-Kummer

2. E � F
�
a
1{n
1 , ..., a

1{n
l

	
for a

1{n
1 , ..., a

1{n
l P F�

Proof. p1 ùñ 2q Assume that E{F is n-Kummer. Thus, E{F is a finite degree Galois extension and
GalpE{F q is a finite Abelian group. Thus, GalpE{F q � Z{m1Z� ...� Z{mlZ where mi | n for each
i. Now, we use Galois correspondence. For each 1 ¤ j ¤ l, consider the subgroup Hj � Gal pE{F q
where, by default, Hj is normal and

Hj �
¹
i ��j

Z{miZ

This gives us a Galois extension EHi{F and Gal
�
EHj {F

�
�GalpE{F q {Hj � Z{mjZ where mj | n.

By Corollary 3, EHj � F
�
b
1{mj
j

	
� F

�
b
dj{n
j

	
where dj � n{mj . Let aj � b

dj
j . Then, repeating

the argument for each j gives us

E � EtidF u � EH1XH2X...XHl � EH1EH2 ...EHl � F
�
a
1{n
1 , ..., a

1{n
l

	
.

p2 ùñ 1q Let E � F
�
a
1{n
1 , ..., a

1{n
l

	
. For each 1 ¤ j ¤ l, consider F

�
a
1{n
j

	
{F . This is a cyclic

extension of degree n by Theorem 4. Consider the diagram:

5



F pa1{n1 , a
1{n
2 , F pa1{n3 qq ... E � F pa1{n1 , ..., a

1{n
l q

F pa1{n1 , a
1{n
2 q

F pa1{n1 q F pa1{n2 q F pa1{n3 q ... F pa1{nl q

F

Then, Gal
�
F
�
a
1{n
1 , a

1{n
2

	
{F

	
� Z{m1Z�Z{m2Z. Next, Gal

�
F
�
a
1{n
1 , a

1{n
2 , a

1{n
3

	
{F

	
� Z{m1Z�

Z{m2Z� Z{m3Z. By induction,

Gal pE{F q �
n¹
i�1

Z{miZ

is Abelian, where mi | n with exponent n.

Definition 6 If G is a finite Abelian group, then its Pontryagin dual is G_ :�HomAb

�
G,S1

�
where S1 � tz P C : |z| � 1u with group operation given by multiplication

If G is finite Abelian, its finite decomposition G � Z{m1Z � ... � Z{mlZ gives us a canonical
isomorphism G_ � pZ{m1Zq_ � ... � pZ{mlZq_. Each cyclic component is isomorphic to itself
noncanonically via its iteraction with S1.

A bilinear pairing x�,�y : G1 � G2 ÝÑ S1 of two Abelian groups is nondegenerate if the
Abelian groups are re-interpreted as Z-modules and the bilinear form is nondegenerate, i.e., it is left
and right nondegenerate, i.e., tg1 P G1 : xg1, G2y � 1u � te1u and tg2 P G2 : xG1, g2y � 1u � te2u,
respectively.

Lemma 7 If G1 is finite and we have a nondegenerate pairing x�,�y of Abelian groups G1 � G2,
then G_

1 � G2 and G_
2 � G1. In particular, G2 is finite.

Proof. The pairing itself gives us a homomorphism of groups from G2 ÝÑ G_
1 given by g2 ÞÝÑ

pg1 ÞÝÑ xg1, g2yq � x�, g2y. This map is a homomorphism because of (bi)linearity: g2 � g12 ÞÝÑ
x�, g2 � g12y � x�, g2y x�g12y. Since the pairing is nondegenerate, the homomorphism is injective:

xx, g2y � xx, g12y for all x P G1 tells us that xx, g2y xx, g12y
�1 � 1 but since xx, g12y

�1 � xx,�g12y,
xx, g2y xx,�g12y � xx, g2 � g12y � 1 for all x and so g2 � g12 � e2 or that g2 � g12.

Thus, |G2| ¤ |G_
1 | � |G1| and G2 is finite. Thus, we also have an injective homomorphism

G1 ÝÑ G_
2 given by g1 ÞÝÑ xg1,�y. This tells us that |G1| ¤ |G_

2 | � |G2| and so, |G1| � |G2| �
|G_

2 | � |G_
1 |. By Pigeon hole principle, both maps are also surjective.

Now, fix a field F . Assume F contains a primitive nth root of unity. Let E{F be an n-Kummer

extension. We know that E � F
�
a
1{n
1 , ..., a

1{n
l

	
for a1, ..., al P F�. We define the following:

Definition 8 A Kummer pairing for E{F is the bilinear pairing

x�,�yE : Gal pE{F q �
F� X pE�qn

pF�qn
ÝÑ S1

defined by pσ, rf sq ÞÝÑ
σpf1{nq
f1{n
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The second tuple is the collection of non-zero elements in F with nth root in E modulo elements
already having nth root in F . In order to check if this is well-defined, we may show that the definition
does not depend on choice of representative f of rf s and that does not depend on choice f1{n P E,
the nth root of f . However, it suffices to show that mapping lands in S1: observe that�

σ
�
f1{n

�
f1{n

�n
�
σ pfq
f

�
f

f
� 1 ùñ

σ
�
f1{n

�
f1{n

P S1.

The Kummer pairing is bilinear. For the right argument, we have

xσ, rf s rgsyE � xσ, rfgsyE �
σ
�
pfgq1{n

	
pfgq1{n

�
σ
�
f1{n

�
σ
�
g1{n

�
f1{ng1{n

�
σ
�
f1{n

�
f1{n

σ
�
g1{n

�
g1{n

� xσ, rf syE xσ, rgsyE

To exhibit linearity on the left argument, observe that

xστ, rf syE �
στ

�
f1{n

�
f1{n

�
στ

�
f1{n

�
f1{n

τ
�
f1{n

�
τ
�
f1{n

� ��
τσ

�
f1{n

�
τ
�
f1{n

� τ
�
f1{n

�
f1{n

�
τσ

�
f1{n

�
τ
�
f1{n

� τ
�
f1{n

�
f1{n

� τ

�
σ
�
f1{n

�
f1{n

�
τ
�
f1{n

�
f1{n

�
σ
�
f1{n

�
f1{n

τ
�
f1{n

�
f1{n

� xσ, rf syE xτ, rf syE

where � is possible because the group is Abelian. Observe that the Kummer pairing restricts to
a bilinear pairing x�,�yE : Gal pE{F q � H where H � xa1, a2, ..., aly is a subgroup generated by
powers of ai. Both pairings are nondegenerate.
Proof. Left side: fix σ P Gal pE{F q. Suppose xσ,�yE kills everything in right group. That is,

1 � xσ, rf syE for any rf s P
F�XpE�qn
pF�qn . In particular,

σ
�
a
1{n
i

	

a
1{n
i

� 1 ðñ σ fixes a
1{n
i so that σ � idE .

On the right side, fix rf s and let xσ, rf syE � 1 for all σ P Gal pE{F q. Then,
σpf1{nq
f1{n � 1 if and only

if σ fixes f1{n. Then, f1{n P F� so rf s � r1s in
F�XpE�qn
pF�qn .

Corollary 9 For any n-Kummer extension E{F , we have isomorphisms Gal pE{F q �
�
F�XpE�qn
pF�qn


_
(and pGal pE{F qq_ �

F�XpE�qn
pF�qn ) and Gal pE{F q � H_

Let us have an overview of what we have accomplished so far. We have seen that Gal pC{Rq �
R�{R¡0 � R�{ pR�q2. Kummer Theory tells us that to compute Gal pC{Rq, we need the Pontargyan
dual. The big dream of algebraic number theory is to study the finite degree extensions of Q. We
can restrict our focus to understanding finite degree Galois extensions (i.e., whenever Gal pE{Qq is
Abelian). However, the hurdle here is that Q does not have enough nth roots of unity: the only
ones are �1.
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The idea we can use here is the number field/function field analogy. This is a dictionary between
a number theory object and an object in function theory. In this analogy, for example, there is a
correspondence between the integers and C rts. They’re both PIDs (with prime ideals generated by
p P Z and t � c with c P C, respectively), Euclidean Domains, both admit localizations (with one
producing Q and the other producing the field of rational functions C ptq) and have finite degree
extensions.

Let us fix a finite degree extension E{C ptq. Suppose

E �
C ptq rXs�

Xn � fn�1ptq
gn�1ptq

Xn�1 � ...� f0ptq
g0ptq

	
We can treat the minimal polynomial as a meromorphic function in t and X with roots in C � C,
with t being the first tuple. We can think of it in general, as a topological space but as an algebraic
variety, it is a complex manifold with some singularties. If π (actually a covering map) is projection
to t, then pulling back functions along π produces extensions C ptq ãÑ E. In fact, punctured discs
on the projectioned space pullback to layers. In Complex Analysis, studying these discs amounts
to studying functions with radius of convergence determined by the these discs. In Algebra, we
consider the ring of formal Taylor series C rrt� css � tΣan pt� cqn : an P Cu at c. Localizing this at
t�c gives us C ppt� cqq, the field of formal Laurent series with negative index and gives us Newton’s
theorem:

Theorem 10 Every finite degree field extension E{C ppt� cqq is of the form E � C ppt� cqq
�
pt� cq1{n

	
For function theory objects, C rrt� css, C ppt� cqq and C ppt� cqq

�
pt� cq1{n

	
, which guide local

behaviour of field extensions of C ptq, do we have a corresponding dictionary to the number theory
object? Something that guides the local behavior of E{Q?

For example, recall that for some rational functions can be written as power series. For exam-
ple, 1{1 � pt� cq � 1 � pt� cq � pt� cq2 � ..., the verification simply being the simplification of

p1� pt� cqq
�

1� pt� cq � pt� cq2 � ...
	
� 1�pt� cq� pt� cq� pt� cq2�pt� cq2� ... with appro-

priate introduction of limits (i.e., pt� cqn Ñ 0 and n Ñ 8). Can we have a similar formal power
series in a prime p? If p � 5, then 1

1�5 � �1{4 � 1 � 5 � 52 � 53 � ... with the corresponding

verification being p1� 5q
�
1� 5� 52 � ...

�
� 1� 5� 5� 52 � 52 � ... but we would need 5n Ñ 0 as

nÑ8 and this is possible in a certain metric on Z: the p-adic metric, where pn Ñ 0 as nÑ8.

3 The p-adic integers

Let us now construct the ring Zp of p-adic integers. Let p be a prime. For each e P Z¡0, consider
Z{peZ. This is a cyclic group under addition of order pe and a natural ring. Given any e, there is a
surjection πe�1 : Z{pe�1Z � Z{peZ defined by rxspe�1 ÞÝÑ rxspe .

In our situation, rpespe�1 P Z{pe�1Z and so we are allowed to consider the ideal 
pex : x P Z{pe�1Z

(
�ppeq .

Observe that Z{peZ �Z{pe�1Z
ppeq where we can invoke the fact that |ppeq| � p. These surjections give

rise to an inverse system �...Z{pe�1Z �...
π3

� Z{p2Z
π2

� Z{pZ. The ring of p-adic integers Zp is defined
as the inverse limit of the above diagram.
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Thus, an element in x P Zp is a sequence x � pm0,m1, ...q where mi P Z{pi�1Z subject to the
requirement that πi�1 pmiq � mi�1 with a ring structure with 0 � p0, 0, 0, ...q being the additive
identity and 1 � p1, 1, 1, ...q being the multiplicative identity. The binary operations of addition and
multiplication are defined coordinate-wise.

The more popular and equivalent way of writing out p-adic elements utilizes the natural repre-
sentative for an element in each Z{pe�1Z. For example, for e � 0, we have t0, 1, ..., p� 1u, and for
e � 1, the representatives are$'''''&'''''%

0� 0p, 1� 0p, ..., p� 1� 0p,
0� p, 1� p, ..., pp� 1q � p,

0� 2p, 1� 2p, ...., pp� 1q � 2p,
...

0� pp� 1q p, 1� pp� 1q p, ..., p� 1� pp� 1q p

,/////./////-
In general,

Z{pe�1Z �

#
ȩ

n�0

anp
n : 0 ¤ an ¤ p� 1

+
and so, elements in Zp may be represented as

�
a0, a0 � a1p, a0 � a1p� a2p

2, ...
�
. This establishes

the isomorphism

Zp�

#
8̧

n�0

anp
n : 0 ¤ an ¤ p� 1

+
In general, for every nonnegative integer m P Z¥0, we can look at mmodpe for every e and so,

each m ¥ 0 can be mapped to Zp via m ÞÝÑ
�
mmodp,mmodp2, ....,mmodpe, ....

�
and we can extend

to Z and embed it inside Zp. The proof of this fact follows from the commutative diagram in the
beginning of this section and because of the universal property of the inverse limit.

In particular, the multiplicative p-adic identity 1 � p1, 1, 1, ...q can be represented as 1�0.p�0.p2�
... whereas the additive p-adic identity 0 � p0, 0, 0, ...q can be represented as 0 � 0� 0.p� 0.p2 � ....
Observe that

1�
8̧

n�0

pp� 1q pn � 0

implying that the nasty summation is the additive inverse of the multiplicative identity.
So now we have a ring. What are the multiplicatively invertible elements in Zp? That is, what

is Z�p ? Observe that pm0,m1, ...q is invertible if and only if there exists pn0, n1, ...q such that
pm0,m1, ...q pn0, n1, ...q � p1, 1, ...q if and only if there exists ne�1 such that me�1ne�1 � 1 is invert-

ible. Thus, to compute Z�p , we need to compute
�
Z{pe�1Z

��
. Suppose m P Z{pe�1Z is not divisible

by p. Then, gcd pm, peq � 1 and so m is invertible in Z{pe�1Z. In particular, p is not invertible and
so, no element divisible by p is invertible. Thus,

Z�p �

#
8̧

n�0

anp
n : 0 �� an

+

A routine calculation shows that the inverse of 1� 1p is 1� p� p2 � .... That is,

1

1� p
� 1� p� p2 � ...

9



Now, consider the ideal pZp � ppq � Zp. This ideal is maximal and is the unique maximal ideal.
To see maximality, observe that Z�p � Zpz ppq. Then, if ppq � I where I is an ideal of Zp, then if I
contains any unit, then I � Zp but if it doesn’t, then I � ppq. For uniqueness, let J be any other
(proper, maximal) ideal. Then, J X Z�p � ∅ � J X pZp X ppqcq � J X ppqc and so J � ppqcc � ppq
but then by definition J � ppq (ppq �� Zp).

The map Zp ÝÑ Z{pnZ, called reduction mod pn, is defined by sending pa0, a1, ...q to its n�1-th
component. The codomain is isomorphic to Zp{pnZp because of the following exact sequence:

0 ÝÑ Zp
.pnÝÑ Zp ÝÑ Z{pnZ ÝÑ 0

The multiplication function p�q pn is an inclusion and hence yields a monomorphism whereas the
projection, courtesy of the colimit, is an epimorphism.

Even though we have Zp{pZp � Z{pZ � Fp, yet the arithmetic of Fp cannot be extended to that
of Zp. To be more concrete, imagine the element a0 � a1p� a2p2 � ... P Zp with 0 ¤ ai ¤ p� 1, i.e.,
following the algebra and representation of elements of Fp. Yet, if we consider just the “constants”
a0, b0 in Zp, their product might give us a0b0 � a1b1p P Zp, where the p coefficient is absent in the
algebra for Fp. There is, however, a different representation or coordinate system which gives us a
nice extension of the arithmetic. To talk about this, we need the following:

Lemma 11 (Hensel’s) Let f pXq P Zp rXs and denote the reduction mod p by f pXq. Assume we
have a factorization f pXq � f1 pXq f2 pXq with fi pXq P Z{pZ rXs � Fp rXs with f1 pXq relatively
prime to f2 pXq (in Fp rXs). Then, there exists polynomials g pXq , h pXq P Zp rXs such that f pXq �
g pXqh pXq in Zp rXs where the reductions g pXq � f1 pXq and h pXq � f2 pXq such that deg pgq �
deg pgq.

The proof of this fact will be skipped but a special case is proved in Theorem 15.
Consider the p � 1st roots of 1 in Zp. These roots satisfy Xp�1 � 1 P Zp rXs. Reduction

mod p would get us Xp�1 � 1 P Fp rXs. A root of the polynomial in Fp is an element a P Fp
satisfying ap�1 � 1 mod p. By Fermat’s Little Theorem, these are all the elements of Fp. Thus,
Xp�1 � 1 � pX � 1q pX � 2q ... pX � pp� 1qq. By Hensel’s Lemma, we can lift each of these roots
so we get a map (called the Teichmüller character) r�s : F�p ÝÑ Zp defined by the lift a ÞÝÑ ras
as a root of unity. It is easy to see that this map is multiplicative ras rbs � rasrbs � ab and so,
ras rbs � rabs. We can extend this to a mulitplicative map r�s : Fp ÝÑ Zp. Let us call ras the
Teichmüller lift of a. Now let a P Zp with a � a0 P Fp. Then ra0s � a0 � ra1p� ra2p2 � ... � a. Thus,
for a, we get a set of new “coordinates” in Zp viz. a0 � a11p � a12p

2 � ... . These have the property
that ras rbs � rabs.

4 The p-adic numbers

Observe that every nonzero element f P Zp has a unique decomposition f � upe where u P Z�p and
e P Z¥0. To see this, write f � a0�a1p�a2p2� ... where 0 ¤ ai ¤ p�1. Let ae � min

i
tai : ai �� 0u.

Then, f � pe
�
ae � ae�1p

e�1 � ...
�

where ae � ae�1p
e�1 � ... is a unit because ae �� 0.

Lemma 12 Zp is an integral domain.

Proof. Let f, g P Zpz t0u. Then, f � pe1u1 and g � pe2u2 for e1, e2 ¥ 0 and so, fg � u1u2p
e1�e2 ��

0.
Thus, localization of Zp embeds Zp into its field of fractions Qp �

!
f
g : f, g P Zp, g �� 0

)
{ �

where � is defined by f
g �

hf
hg for h P Zpz t0u. This is the field of p-adic numbers.

10



Corollary 13 Every nonzero element in Qp has a unique factorization f � upn where n P Z and
u P Z�p

Now, recall that Z ãÑ Zp. By universal property of localization, we have Q ãÑ Qp. Concretely,
observe that for any m{n P Q, we have m{n � pem1{n1 where p - m1, n1 and e P Z. Thus, m1, n1 P Z�p .

The p-adic absolute value on Qp is the map |.|p : Qp ÝÑ R¥0 defined by |0|p � 0 and for

f P Qp, for f � upn, |f |p � p�n. This function is well-defined because of unique factorization.

It is easy to see that |u|p � p0 � 1 for any invertible element u P Z�p � Qp. In particular,
|�f |p � |f |p and so, |�1|p � |1|p � 1. It is also easy to see that |fg|p � |f |p |g|p because for

|fg|p � |u1pe1u2pe2 |p � p�pe1�e2q � p�e1p�e2 � |u1pe1 |p |u2p
e2 |p � |f |p |g|p. The p-adic valuation is

the map vp : Qp ÝÑ R\ t8u given by vp pfq � � logp |f |p. In particular, vp pupnq � n. That is, for
any f P Qp, the valuation returns the lowest power of p, if the expression of f is looked as a Laurent
Series in terms of p.

We also have the ultra-metric inequality: |f � g|p ¤ max
!
|f |p , |g|p

)
. To check this, it suffices

to observe
f � ae1p

e1 � ae1�1p
e1�1 � ...

�g � ae2p
e2 � ae2�1p

e2�1 � ...

for cases e1 ¼ e2. Assume that e1   e2 and so we can have e1 � k � e2 (he case for e2 ¡ e1
is similar, by symmetry. Then, f � g � ae1p

e1 � ... � ae1�k�1p
e1�k�1 � ... and so, |f � g|p �

� min
0¤i¤k

 
pe1�i : e1 � i �� 0

(
� max

!
|f |p , |g|p

)
. If e1 � e2 and if ae1�ae2 � 0modpe1 , then |f � g|p �

p�e2   p�e1 � max tp�e1 , p�e1u � max
!
|f |p , |g|p

)
or if ae1�ae2 � 0modpe1 , then |f � g|p � p�e1 �

max tp�e1 , p�e1u � max
!
|f |p , |g|p

)
.

A p-adic distance function dp : Qp�Qp ÝÑ R can then be formulated using the p-adic norm via
dp pf, gq � |f � g|p. This is an ultra metric because of the strong triangle inequality
Proof. dp pf, gq � |f � g|p � |� pg � fq|p � |g � f |p � dp pg, fq. Degeneracy is easy to see using

|0|p � 0. For the triangle inquality, observe that dp pf, hq � |f � g � g � h|p ¤ max
!
|f � g|p , |g � h|p

)
�

max tdp pf, gq , dp pg, hqu ¤ dp pf, gq � dp ph, gq

Proposition 14 Qp is complete with respect to this metric.

Proof. Let panq
8
n�1 be a Cauchy sequence for an P Qp. Then, for any ε ¡ 0, we can find N such

that dp pan, amq � |an � an�1|p   ε for all n ¥ N . Choose ε � 1
pM

for some large M . Then, we are

guaranteed an N such that, for all n ¥ N , |an � an�1|p  
1
pM

. Thus, the numbers an � an�1 differ
only after the M -th index and so we can write the difference as

an � an�1 �
�
a0,mp

m � a0,m�1p
m�1 � ...� a0,Mp

M � a0,Mp
M�1 � a0,M�2p

M�2 � ...
�

�
�
a0,mp

m � a0,m�1p
m�1 � ...� a0,Mp

M � a1,M�1p
M�1 � a1,M�2p

M�2 � ...
�

Then,
an Ñ

¸
m

a0,mp
m

In fact, since Q ãÑ Qp, Qp is the completion of Q with respect to dp. To prove this, it suffices to
prove that dp restricted to Q is a metric (which satisfies the strong triangle inequality).
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Proof. We first show that the strong triangle inequality is satisfied. Let x, y, z P Q. Without
loss of generality, assume that |x� z|p ¤ |z � y|p. Since x, y, z are rational numbers and their

difference is another rational number, we can write x � z � a
b p
c and z � y � a1

b1 p
c1 such that

gcd pa, bq � gcd pa1, b1q � 1. Then, |x� z|p � p�c and |z � y|p � p�c
1

. By choice of x, y, z, we

must have p�c ¤ p�c1 ùñ pc
1

¤ pc ùñ c1 ¤ c. Now, d px, yq � |x� y|p � |x� z � z � y|p ����ab pc � a1

b1 p
c1
���
p
�

���pc1 �ab pc�c1 � a1

b1

	���
p
. We can write a

b p
c�c1 � a1

b1 , a rational number, as ab1pc�c
1
�a1b

bb1 .

By definition of a, b and a1, b1, both are relatively prime to p. Hence bb1 is relatively prime to p.
Similarly, ab1pc�c

1

� a1b is relatively prime to p, provided that c1 ¤ c, which we have. Thus,

|x� y|p �
����pc1 �ab pc�c1 � a1

b1


����
p

� p�c
1

¤ max
!
p�c

1

, p�c
)
� max

!
|x� z|p , |z � y|p

)
Now we show that dp restricted to Q is still a metric. Observe that |0|p � 0 still holds. Also,

p�c P R�. Hence dp px, yq ¥ 0. Next, let dp px, yq � 0. But this means that |x� y|p � p�c � 0.
This is where the definition |0|p � 0 comes in and hence x � y. Conversely, if x � y, then x and y
share the same factorization a

b p
c and hence |x� y|p � 0.

To show symmetry, let x � a
b p
c and y � a1

b1 p
c1 such that c1 ¤ c. Then, x � y � pc

1 ab1pc�c
1
�a1b

bb1

so that |x� y|p � pc
1

. Furthermore, y � x � pc
1 a1b�ab1pc�c

1

bb1 so that |y � x|p � pc
1

and hence
|x� y|p � |y � x|p. The triangle inequality follows from the strong triangle inequality.

Furthermore, Zp is the closure of Z in Qp, making Zp complete, as well.

Now, observe that we can describe important pieces of Qp using dp by Zp �
!
a P Qp : |a|p ¤ 1

)
and so, pZp �

!
a P Qp : |a|p   1

)
and Z�p �

!
a P Qp : |a|p � 1

)
.

Theorem 15 Let f pXq P Zp rXs with f pXq � pX � αq f2 pXq P Fp rXs with f2 pXq relatively prime
to X � α (that is, α is a simple root of f pXq). Then, f has a simple root

That is, f pXq � pX � aqh pXq with a � α. The proof is built on Netwon’s method but with
convergence in Qp. Recall that this works by constructing an sequence an with seed a0 converging
to the root, starting off with a1 � a0 � δ, giving f pa0q � δf 1 pa0q � 0
Proof. Choose a0 P Zp such that a0, the projection of a0 mod p, is α. This allows us to work our
way from f pαq � 0 in Fp rXs to

f pXq � f pa0q � f 1 pa0q pX � a0q �
f p2q pa0q

2
pX � a0q

2 � ...�
f pnq pa0q

n!
pX � a0q

n � ....

Observe that f pa0q � f pαq � 0 P Fp and so, f pa0q is divisible by p. Since α is a simple root, f 1 pa0q
is not divisible by p and so, is a unit in Z�p . Let X � a1 � a0 �

fpa0q
f 1pa0q

� a0 � b0p to get

f pa1q � f pa0q � f 1 pa0q
�
a0 �

f pa0q
f 1 pa0q

� a0



�
f p2q pa0q

2

�
a0 �

f pa0q
f 1 pa0q

� a0


2

� ...

with f pa1q is divisible by p2. Observe that a1 � a0. Let a2 � a1 �
fpa1q
f 1pa1q

� a1 � b1p2, plug in f pXq
and continue. Defining a � lim

nÑ8
an yields f paq � lim

nÑ8
f panq � 0.
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Lemma 16 Let f pXq � cdX
d � ... � c1X � c0 P Qp rXs be an irreducible polynomial such that

cd, c0 P Zp. Then, f pXq P Zp.

Proof. Assume, for the sake of contradiction, the existence of a natural number m ¡ 0 such that
pm is the smallest power of p which yields pmf pXq P Zp rXs. Consider pmf pXq P Fp rXs. The

polynomial pmf pXq has no constant term and is of lower degree because cd, c0 P Zp by hypothesis.

Hence pmf pXq � X lQ pXq where Q pXq P Fp rXs is not divisible by X. Hence by Hensel’s Lemma,
we can lift the factorization. But then f is reducible, a contradiction. Thus, m � 0.

5 Extensions of Qp

Now, for any field K, a non-Archimedean absolute value on K is a map |�|K : K ÝÑ R¥0 such that
|x|K � 0 ðñ x � 0, |xy|K � |x|K |y|K (it is multiplicative) and satisfies the ultra-metric or strong
triangle inequality (|a� b|K ¤ max t|a|K , |b|Ku). The p-adic norm |.|p : Qp ÝÑ R¥0 is an example.

Let K{Qp be a finite degree extension. That is, let n � rK : Qps. Define a map |.|K ÝÑ R¥0 as
follows: fix α P K and define a map λα : K ÝÑ K given by λα pxq � αx. This map is manifestly
Qp-linear.
Proof. λα pax� byq � α pax� byq � αax� αby � aαx� bαy � aλα pxq � bλα pyq

It is easy to see that λαx�βy � λαλx � λβλy. Moreover, if α � 0, we have the trivial map which
sends everything to zero and for α �� 0, the inverse for λα is λα�1 where λ1 � idK is the additive
identity in AutQp pKq. Each such element of AutQp pKq can be treated as an n � n matrix (basis
considerations aside). This gives us the map det :AutQp pKq ÝÑ Qp.

Define |α|K � |det pλαq|
1{n
p . In this case, |.|K is a non-Archimedean absolute value.

Proof. The first two axioms are straightforward: fix a P Qp and a basis of K: let K � Qp�Qpβ1�
Qpβ2 � ...�Qpβn�1. In this basis, matrix for λa is

aI �

�����
a 0 ... 0
0 a ... 0
...

. . .
...

0 0 ... a

�����
which tells us that det pλαq � an. Clearly, 0 P K ùñ 0 P Qp ùñ |0|K � 0 and conversely,

for α P Kz t0u, |α|K �� 0. Next, for any α, β P K, |αβ|K � |det pλαβq|
1{n
p � |det pλαλβq|

1{n
p �

|det pλαqdet pλβq|
1{n
p � |det pλαq|

1{n
p |det pλβq|

1{n
p � |α|K |β|K . For the ultra-metric inequality, it

suffices to check
���1� α

β

���
K
¤ max

!���αβ ���
K
, 1
)

. If either one of α, β P K is zero, then the statement

is trivially true. If α �� 0 �� β, then either one of
���αβ ���

K
and

���βα ���
K

is ¤ 1. WLOG, assume that���αβ ���
K
¤ 1. In other words, we just need to prove that

���1� α
β

���
K
¤ 1. Let the minimial polynomial

mα
β
pXq of α

β be Xd � cd�1X
d�1 � ...� c1X � c0 P Qp rXs for some d ¤ n. Since

���αβ ���
K
¤ 1 and by

Zp �
!
a P Qp : |a|p ¤ 1

)
, we can infer that that c0 P Zp.

To see this, observe that for any fixed α P K with mα pXq � Xd � ...c1X
1 � c0 P Qp rXs the

minimal polynomial of α such that d � rQp pαq : Qps. Then, |α|K �
����cn{d0

���1{n
p

. That is, |det pλαq|p �

�cn{d0 where n � rK : Qps. For further justification, we can look at Qp
deg d
ãÑ Qp pαq

deg n{d
ãÑ K. We
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have a basis K consisting of powers of α with a basis of K{Qp pαq. That is,

K �
n{d�1à
j�0

d�1à
i�0

Qpαiβj

This allows us to write a matrix for λα (the corresponding basis element is labelled to the left):

1
α
α2

...
αd�2

αd�1

β1
...

αd�1β1

���������������

0 0 � � � 0 0 �c0
1 0 � � � 0 0 �c1
0 1 � � � 0 0 �c2
0 0 1 � � � 0 �c3
...

...
...

. . . 0
...

0 0 � � � 0 1 cd�1

0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

���������������
And so, det pλαq � det pblockqn{d � p�c0q

n{d � |α|K .
So now that we have mα

β
pXq � Xd � cd�1X

d�1 � ... � c1X � c0 P Qp rXs and cd, c0 P Zp rXs,
therefore by Lemma 16 mα

β
pXq P Zp rXs. It is easy to prove that m1�α

β
pXq � mα

β
pX � 1q and

so mα
β
pX � 1q P Zp rXs and so,

���1� α
β

���
K
¤ 1.

In summary, for a finite field extension K{Qp with n � rK : Qps, the non-Archimedean norm

|�|p on Qp extends to |�|K : K ÝÑ R¥0 and it is defined by |a|K � |det pλaq|
1{n
p . Just like the p-adic

numbers, we can use |�|K to define several subobjects. Let OK � ta P K : |a|K ¤ 1u. Observe that
Zp � OK . OK is, in fact, a ring and it’s called the ring of integers in K. Each element in OK is
integral over K.
Proof. We need to show that for any x P OK , there exists integers ci such that xd � cd�1x

d�1 �
...� c0 � 0 for d ¤ n. Since x P OK , we must have x P K and so we are guaranteed the existence of
a minimal polynomial mx pXq � Xd � ...c1X

1 � c0 P Qp rXs of x with d ¤ n and mx pxq � 0. Since

|x|K �
����cn{d0

���1{n
p

¤ 1, we must have mx pXq P Zp rXs by Lemma 16.

Moreover, for any a P K, if there exists nonzero, monic f pXq P Zp rXs such that f paq � 0 , then
a P OK .
Proof. First we show that the existence of such a polynomial is guaranteed. Recall that if ma pXq P
Qp rXs is the minimal polynomial of a P K, say ma pXq � Xd� cd�1X

d�1� ...� c1X � c0 P Qp rXs,
then, |a|K � |c0|

1{d
p tells us that |a|K ¤ 1 ðñ |c0|

1{d
p ¤ 1 ðñ |c0|p ¤ 1 ðñ c0 P Zp. Thus,

the polynomial ma pXq is monic, irreducible with leading coefficients and constant term in Zp. By
Lemma 16, cd�1, ..., c0 P Zp.

Now, for the latter claim, take an arbitrary polynomial f pXq P Zp rXs and let a P K such that
f paq � 0. That is, 0 � ad � cd�1a

d�1 � ...� c1a� c0 and so, ad � �cd�1a
d�1 � ...� c1a� c0 and so

a � �cd�1 � cd�2a
�1 � ...� c1a

2�d � c0a
1�d P K (4)

Suppose a R OK . That is, |a|K ¡ 1 or that
��a�1

��
K
  1 and so, a�1 P OK and the combination in

Eq (4) tells us that a P OK , a contradiction (because Zp � OK).
Said differently, OK is the integral closure of Zp in K.
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To see the above proof play out, consider the polynomial Xn � p P Qp rXs. It is easy to see that
Xn � p is irreducible by Eisenstein’s Criterion. Let F be the splitting field of Xn � p. If Xn � p
factors, then Xn�p � ma1 pXqma2 pXq ...mal pXq where ai P F is a root of Xn�p, we have ai P OF

for each i and so mai pXq P Zp rXs. If ma1 pXq � Xr� ...� c0 and Xn�p � ma1 pXq pX
s � ...� d0q

with c0, d0 P Zp. Mod p reduction of Xn � p is Xn P Fp rXs. However, c0 and d0 are divisible by p
because p � kc0d0, a contradiction. Thus, c0d0 � �p.

6 Invariants of K{Qp

We can also define p � ta P K : |a|K   1u. Observe that pZp � p � OK .

Lemma 17 p is a unique maximal ideal of OK .

Proof. This follows from the observation that p �OKzO�
K so we just need to prove that O�

K �
ta P K : |a|K � 1u. If u, v P O�

K with uv � 1 tells us 1 � |uv|K � |u|K |v|K , which cannot be
satisfied if either |u|K   1 or |v|K   1.

Now let I be a proper ideal of OK and p � I and let x P OK . Then either |x|K   1 or |x|K � 1.
Because p �OKzO�

K then we must have either x P p or that x P I and so, either I � p or that
I � OK .

For uniqueness, let J be any other (proper, maximal) ideal. Then, JXO�
K � ∅ � JXpOK X pcq �

J X pc and so J � pcc � p but then by definition J � p since p �� OK .
Clearly, Z�p � O�

K .
Thus, we can form a field Kp � OK{p. This is called the residue field of K. Now, we also have a

field extension Fp � Kp (the arrow on the extreme right) so that Kp is characteristic p.

p OK OK{p � k

pZp Zp Zp{pZp � Fp

Is this extension finite? That is, can we rule out cases like Fp ptq {Fp? Yes.

Lemma 18 rKp : Fps ¤ n

Proof. Fix a linearly independent set. That is, pick a1, ..., am P Kp which is linearly independent
over Fp with lifts a1, ..., am P OK � K. Suppose that these have nontrivial linear dependence over
Qp. That is, let b1a1 � ... � bmam � 0 for nontrivial bi’s. Now, for each bi, we know that we can
write bi � uip

ni (because they are invertible) and hence we can multiply the relation with p�n where
n � min tni : 1 ¤ i ¤ mu and this gives us a new linear dependence relation b11a1 � ...� b1mam � 0.
At least one of them is a unit (the one corresponding to ni � n). Going downstairs again back to
the reduction mod p tells us b1a1 � ... � bmam � 0 in Kp which is linearly independent over Fp.
However, the projection tells us that at least one of the coefficients (the one corresponding to the
projection for n � ni) is non-zero, a contradiction. Thus, m ¤ n.

Thus, Kp � Fpf for some f ¤ n. Let us call such an f the inertia degree (of K{Qp). In
particular, the isomorphism Kp{ pZp{pZpq � Kp{Fp implies that the extension on the left is of degree
f . The use of the definite article “the” is justified because of the uniqueness of f , to begin with.
This is one invariant of K. Let us explore another.
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Recall that for a P K, we can map a ÞÝÑ |a|K �
�
|detλa|p

	1{n

. This implies that the value

group (that is, the set |K�|p �
!
x P R¡0 : x � |k|p , k P K

)
) is a subgroup of a cyclic group. Why?

Let us start with the observation that
��Q�
p

��
p
�

 
..., p�2, p�1, 1, p, p2, ...

(
� pZ is a cyclic group and

that |K�|K �
 
..., p�2{n, p�1{n, 1, p1{n, p2{n, ...

(
�

@
p�1{n

D
. Since the latter is a cyclic group and

the subgroup of a cyclic group is cyclic, we know that |K�|K is cyclic. Let |K�|K �
@
p�d{n

D
. But

because Qp � K, we have must
��Q�
p

��
p
� |K�|K . That is, but that means pZ � xpy � p�d{nZ �@

p�d{n
D

hence d | n. Let n{d � e. That is, the generator
@
p�d{n

D
�

@
p1{e

D
where e | n and so e ¤ n.

We call e the ramification index of K over Qp. Some authors call this the ramification degree.
So far, we know that |K�|K �

@
p�1{e

D
and that OK � ta P K : |a|K ¤ 1u � K. Thus, we can

choose π P OK such that |π|K � p�1{e. For instance, in Qp, we have p�1 � |p|p and so we can

choose π � p P OQp � Zp. Effectively,
��Q�
p

��
K
�

@
p�1

D
. This phenomenon is more general.

Lemma 19 Let K{Qp be finite degree extension. Every nonzero ideal in OK is of the form pπmq �
πmOK for some m P Z¥0 and π P OK .

Proof. Let A be a nonzero ideal of OK . Thus, for all a P A, |a|K ¤ 1. The possible values for
nonzero a form a discrete subset of R¡0 viz.

 
1, p�1{e, p�2{e, ...

(
. That is, |A|K �

 
1, p�1{e, p�2{e, ...

(
.

Since |A|K is bounded above, there must exist a largest absolute value of nonzero elements of A, say
p�m{e for some m P Z¥0. That is, Da P A such that |a|K � p�m{e �

��pm{e��
K

.

Let π � p1{e. Then |π�ma|K � |π�m|K |a|K � 1 (since |π�m|K � pm{e) and thus π�ma is a unit.
Therefore, the ideal π�mA of OK contains a unit and so π�mA �OK . Thus, A � πmOk � pπmq.

Corollary 20 p � ta P K : |a|K   1u � pπq

Proof. Let p � pπmq. If m ¡ 1, then p�pπq, which contradicts the maximality of p
This gives us a tower of ideals OK � pπq �

�
π2
�
�

�
π3
�
� .... In fact, OK is then a PID and so,

every prime ideal is maximal and this is another way to establish Lemma 17.
Let a P OK . Since p �OKzO�

K , we must have a P p � pπq or a � u is a unit. Thus, a � πm

for some m P Z¥0 or a � u P O�
K . Moreover, since |a|K � p�m{e �

��pm{e��
K
� |πm|K � |πm|K 1 �

|πm|K |u|K � |uπm|K . This observation can be formalised as follows:

Corollary 21 For every nonzero a P OK (resp. P K), there is a unique factorization a � uπm for
u P O�

K and m P Z¥0 (resp. m P Z)

Proof. Let a P K � Qp � Qpp1{n � Qpp2{n � ... � Qppn�1{n. In these standard basis, a �
a0 � a1β1 � ...� an�1βn�1 where βi � pi{n. Moreover, for scalar, we have ai � uip

ni by Corollary
13 for ni P Z. Let m � min

1¤i¤n�1
ni accomplishes the task for us. The m in a � upm{e � uπm becomes

positive in the case of OK .
Let us go back to our number field and function field analogy. All finite degree extensions

K{C pptqq are of the form C
��
t1{e

��
� C pptqq rXs { pXe � tq. This makes the analogy with K{Qp

obvious once we replace t with p. In fact, C pptqq � C rrtss
�
1
t

�
, the formal Laurent Series, corresponds

to Qp � Zp
�
1
p

�
and C rrtss, formal Taylor series do in fact resemble Zp. C

��
t1{e

��
can be given

a non-Archimedean norm, as well, by choosing ε   1 approximately close to 1{p. Observe that���an0
tn0{e � an0�1t

n0�1
e � ...

��� � εn0{e. The corresponding field for Qp pπq would be C
��
t1{n

��
{C pptqq

as an n degree cover.
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However, C
��
t1{e

��
{t1{eC

��
t1{e

��
� C and so, every residue field in function fields can be char-

acterised based on isomorphisms of C. For K{Qp, the story is a little different. We have seen that
residue fields have an infinite number of extensions.

What is the situation in characteristic p? In this scenario, we can replace C rrtss and C pptqq
by Fp rrtss and Fp pptqq. However, finite degree extensions K{Fp pptqq give us another extreme. On
the one hand, we do have a residue field of the form Fq pptqq {Fp pptqq for q � pf but on the other,
Fp

��
t1{e

��
{Fp pptqq is not a separable extension so there is no hope in applying Galois Theory here.

On the number field side of the picture, we can start off with K � Qp rXs { pXn � pq � Qp pπq
where π is a root of Xn � p in the splitting field F of Xn � p. The ramification index of K is n
because |πn|K � |p|p � p�1 and so |π|K � p�1{n � |π|nK . In this case, we say that the extension is
totally ramified

In such a case, the inertia degree is 1. To see this, observe that we can write K � Qp � Qpπ �
...Qpπn�1 and so, for a P K, we have a � a0 � a1π � ... � an�1π

n�1 with each ai being successive
powers of p, we can write p � bn0

πn0 � bn0�1π
n0�1 � .... The arithmetic is a little different because

cn0
has to be added to bn0

and we might have a carrying to the πn0th term. Define |�|1 : K ÝÑ R¥0

via |0|1 � 0 and |a|
1

� p�n0{n. This is an absolute nonArchimedean value extension |�|p. Because
of uniqueness, we get Kp � Fp and so the inertia degree is 1.
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